÷Answer:
Standard Deviation = 176.5
Step-by-step explanation:
To calculate the standard deviation, calculate the mean score for the 4 standard deviation scores:
mean, m = Σx ÷ n
where Σx represents summation of each value = 162 + 153 + 317 + 413
= 1045
n = number of samples to be considered = 4
mean, m = 1045 ÷4
= 261.25
To calculate the standard deviation, use the formula below
SD = [tex]\sqrt{\frac{Σ(x-m)}{n} ^{2} }[/tex]
where x = each value from the week lead time
m = mean = 261.25
n = the size = 4
The Standard deviation formula can be simplified further
when x = 162
[tex]\sqrt{\frac{(x1-m)}{n} ^{2} }[/tex] = 49.625
when x = 153
[tex]\sqrt{\frac{(x2-m)}{n} ^{2} }[/tex] = 23.125
when x = 317
[tex]\sqrt{\frac{(x3-m)}{n} ^{2} }[/tex]= 27.875
when x = 413
[tex]\sqrt{\frac{(x4-m)}{n} ^{2} }[/tex]= 75.875
Note that the above 4 equations can be lumped up into one giant equation by applying a big square root function instead of breaking it down
SD = 49.625 + 23.125 + 27.875 + 75.875
SD = 176.5