Answer: The theoretical potential of the given cell is -0.072 V
Explanation:
The given chemical cell follows:
[tex]Pt(s)|H_2(g,757torr)|HCl(aq,2.00\times 10^{-4}M)||Ni^{2+}(aq,0.0400M)|Ni(s)[/tex]
Oxidation half reaction: [tex]H_2(g,757torr)\rightarrow 2H^{+}(aq,2.00\times 10^{-4}M)+2e^-;E^o_{2H^{+}/H_2}=0.0V[/tex]
Reduction half reaction: [tex]Ni^{2+}(aq,0.0400M)+2e^-\rightarrow Ni(s);E^o_{Ni^{2+}/Ni}=-0.25V[/tex]
Net cell reaction: [tex]H_2(g,757torr)+Ni^{2+}(aq,0.0400M)\rightarrow 2H^{+}(aq,2.00\times 10^{-4}M)+Ni(s)[/tex]
Oxidation reaction occurs at anode and reduction reaction occurs at cathode.
To calculate the [tex]E^o_{cell}[/tex] of the reaction, we use the equation:
[tex]E^o_{cell}=E^o_{cathode}-E^o_{anode}[/tex]
Putting values in above equation, we get:
[tex]E^o_{cell}=-0.25-(0.0)=-0.25V[/tex]
To calculate the EMF of the cell, we use the Nernst equation, which is:
[tex]E_{cell}=E^o_{cell}-\frac{0.059}{n}\log \frac{[H^{+}]^2}{[Ni^{2+}]\times p_{H_2}}[/tex]
where,
[tex]E_{cell}[/tex] = electrode potential of the cell = ? V
[tex]E^o_{cell}[/tex] = standard electrode potential of the cell = -0.25 V
n = number of electrons exchanged = 2
[tex][H^{+}]=2.00\times 10^{-4}M[/tex]
[tex][Ni^{2+}]=0.0400M[/tex]
[tex]p_{H_2}=757torr=0.996atm[/tex] (Conversion factor: 1 atm = 760 torr)
Putting values in above equation, we get:
[tex]E_{cell}=-0.25-\frac{0.059}{2}\times \log(\frac{(2.00\times 10^{-4})^2}{0.0400\times 0.996})\\\\E_{cell}=-0.072V[/tex]
Hence, the theoretical potential of the given cell is -0.072 V