Solve the triangle. Triangle A B C has a vertex angle labeled C that measures 64 degrees, a base angle labeled B that measures 53 degrees, and a base angle labeled A that does not have a given measurement. The side connecting angle A to angle C is labeled b. The side connecting angle C to angle B is labeled a and measures 10 units. The base leg connecting angle B to angle A is labeled c. 64 degrees a equals 10 53 degrees b c Upper C A

Respuesta :

Answer:

A=73°, b=8.35 Units, c=9.4 Units

Step-by-step explanation:

To solve a triangle completely means to find all its sides and angles.

First, we determine Angle A.

53°+64°+A=180° (Sum of Angles in a Triangle)

107°+ A=180°

A=180°-107° =73°

Next, we determine the lengths of AC and AB.

Using Sine Rule

[TeX]\frac{a}{Sin A}= \frac{b}{Sin B}[/TeX]

[TeX]\frac{10}{Sin 73}= \frac{b}{Sin 53 }[/TeX]

Criss multiplying

b X sin73 = 10 X Sin 53

[TeX]b= \frac{10 X Sin 53}{Sin 73 }[/TeX]

b=8.35 Units

Similarly, for c

[TeX]\frac{a}{Sin A}= \frac{c}{Sin C}[/TeX]

[TeX]\frac{10}{Sin 73}= \frac{c}{Sin 64 }[/TeX]

Criss multiplying

c X sin73 = 10 X Sin 64

[TeX]b= \frac{10 X Sin 64}{Sin 73 }[/TeX]

c=9.4 Units

Ver imagen Newton9022

Answer:

Angle A = 63°

Side b = 8.96 units or 9 units

Side c = 10 units

Step-by-step explanation:

Take a look at the photo attached to understand it better

Ver imagen ifesynwajesuschrist
ACCESS MORE