Answer:
$67,721.52
Explanation:
Given: Cash flow of $22,400, $28,700, $30,300, $10,900 at the end of Years 1 to 4, respectively.
Discount rate is 14.7%
Now, finding the current value of these cash flows.
NPV= [tex]\frac{cash\ flow}{(1+r)^{n}}[/tex]
⇒ [tex]NPV= \frac{\$ 22400}{(1+0.147)^{1} }+\frac{\$ 28700}{(1+0.147)^{2}}+\frac{\$ 30300}{(1+0.147)^{3}}+ \frac{\$ 10900}{(1+0.147)^{4}}[/tex]
⇒ [tex]NPV= \frac{\$ 22400}{(1.147)^{1} }+\frac{\$ 28700}{(1.147)^{2}}+\frac{\$ 30300}{(1.147)^{3}}+ \frac{\$ 10900}{(1.147)^{4}}[/tex]
⇒ [tex]NPV= \frac{\$ 22400}{(1.147) }+\frac{\$ 28700}{(1.3156)}+\frac{\$ 30300}{(1.5090)}+ \frac{\$ 10900}{(1.7308)}[/tex]
⇒ [tex]NPV= \$19529.20+\$ 21815.14+\$20079.52+ \$ 6297.66[/tex]
∴ [tex]NPV= \$ 67721.52[/tex]
Hence, $67721.52 is the current value of these cash flows.