Respuesta :
Answer:
Q_total = 1431 W
Explanation:
Given:-
- The dimension of the engine = ( 0.5 x 0.4 x 0.8 ) m
- The engine surface temperature T_s = 80°C
- The road surface temperature T_r = 25°C = 298 K
- The ambient air temperature T∞ = 20°C
- The emissivity of block has emissivity ε = 0.95
- The free stream velocity of air V∞ = 80 km/h
- The stefan boltzmann constant σ = 5.67*10^-8 W/ m^2 K^4
Find:-
Determine the rate of heat transfer from the bottom surface of the engine block by convection and radiation
Solution:-
- We will extract air properties at 1 atm from Table 15, assuming air to be an ideal gas. We have:
T_film = ( T_s + T∞ ) / 2 = ( 80 + 20 ) / 2
= 50°C = 323 K
k = 0.02808 W / m^2
v = 1.953*10^-5 m^2 /s
Pr = 0.705
- The air flows parallel to length of the block. The Reynold's number can be calculated as:
Re = V∞*L / v
= [ (80/3.6)*0.8 ] / [1.953*10^-5]
= 9.1028 * 10^5
- Even though the flow conditions are ( Laminar + Turbulent ). We are to assume Turbulent flow due to engine's agitation. For Turbulent conditions we will calculate Nusselt's number and convection coefficient with appropriate relation.
Nu = 0.037*Re^0.8 * Pr^(1/3)
= 0.037*(9.1028 * 10^5)^0.8 * 0.705^(1/3)
= 1927.3
h = k*Nu / L
= (0.02808*1927.3) / 0.8
= 67.65 W/m^2 °C
- The heat transfer by convection is given by:
Q_convec = A_s*h*( T_s - T∞ )
= 0.8*0.4*67.65*(80-20)
= 1299 W
- The heat transfer by radiation we have:
Q_rad = A_s*ε*σ*( T_s - T∞ )
= 0.8*0.4*0.95*(5.67*10^-8)* (353^4 - 298^4)
= 131.711 W
- The total heat transfer from the engine block bottom surface is given by:
Q_total = Q_convec + Q_rad
Q_total = 1299 + 131.711
Q_total = 1431 W
Following are the calculation to the given question:
Calculating the average film temperature:
[tex]\to T_f = \frac{T_s + T_{\infty}}{2} =\frac{80+20}{2}= 50^{\circ}\ C\\\\[/tex]
At [tex]T_f = 50^{\circ}\ C[/tex], obtain the properties of air:
[tex]\to k=0.02735\ \frac{W}{m \cdot K} \\\\\to v=1.798 \times 10^{-5} \ \frac{m^2}{s}\\\\ \to Pr =0.7228 \\\\\to Re_{L} =\frac{VL}{v} =\frac{80 (\frac{5}{18}) \times 0.8}{1.798 \times 10^{-5}} = 988752.935 \\\\[/tex]
Assume the engine block's bottom surface is a flat plate.
For
[tex]\to 5\times 10^{5} \leq Re_{L} \leq {10^7}, 0.6 \leq Pr \leq 60 \\\\[/tex]
[tex]\to Nu=0.0296 \ \ Re_{L}_{0.8} Pr^{\frac{1}{3}}\\\\[/tex]
[tex]= 0.0296(988752.935)^{0.8} (0.7228)^{\frac{1}{3}}\\\\ = 1660.99[/tex]
But,
[tex]\to Nu=\frac{hL}{k} \\\\ \to h= Nu \frac{k}{L}\\\\[/tex]
[tex]=\frac{1660.99 \times 0.02735}{0.8}\\\\ = 56.7850 \frac{W}{m^2 . K}\\\\[/tex]
[tex]\to A_s= L \times w\\\\[/tex]
[tex]= 0.8 \times 0.4\\\\ =0.32\ m^2\\\\[/tex]
[tex]\to Q_{com} = h A_s (T_s -T_{\infty})\\\\[/tex]
[tex]= 56.7850 \times 0.32 \times (80-20)\\\\ = 1090.272\ W\\\\[/tex]
[tex]\to Q_{rad} = \varepsilon A_s \sigma (T_{s}^{4} -T_{surr}^4) \\\\[/tex]
[tex]= (0.95)(0.32 )(5.67 \times 10^{-8}) [(80+273)^4-(25+273)^4]\\\\ = 131.710\ W\\\\[/tex]
Then the total rate of heat transfer is
[tex]\to Q_{total} = Q_{corw} + Q_{rad}\\\\[/tex]
[tex]=1090.272 +131.710 \\\\= 1221.982\ W\\\\[/tex]
Learn more:
brainly.com/question/11951940