Answer:
[tex]y = 50.243 + 2.387x[/tex]
Step-by-step explanation:
We are given the following in the question:
Knee Height(x): 56 44 41 44 55
Height(y): 190 150 145 165 174
The least square regression equation is given by:
[tex]y = b_0 + b_1x[/tex]
where
[tex]b_0 = \dfrac{\sum y- b_1\sum x}{n}\\\\b_1 = \dfrac{n\sum xy-\sum x\sum y}{n\sum x^2 - (\sum x)^2}[/tex]
[tex]\sum x = 240\\\sum y = 824\\\sum (xy) = 40015\\\sum x^2 = 11714[/tex]
Putting values, we get,
[tex]b_1 = \dfrac{5(40015)-240(824)}{5(11714)-(240)^2} = 2.387\\\\b_0 = \dfrac{824-2.387(240)}{5} = 50.224[/tex]
Thus, the regression equation is:
[tex]y = 50.243 + 2.387x[/tex]