Answer:
The force acting on the bullet [tex]F = 84000 \frac{lb ft}{s^{2} }[/tex]
The value of impulse on the bullet in the given time interval P = 92.4 [tex]\frac{lb ft}{sec}[/tex]
Explanation:
Mass of the bullet ( m ) = 200 gr = 0.028 lb
Initial velocity ( U ) = 0
Final Velocity ( V ) = 3300 [tex]\frac{ft}{sec}[/tex]
Force acting on the bullet [tex]F = \frac{m ( V - U )}{t}[/tex]
⇒ [tex]F = \frac{ 0.028 ( 3300 - 0 )}{0.0011}[/tex]
⇒ [tex]F = 84000 \frac{lb ft}{s^{2} }[/tex]
This is the force acting on the bullet.
Magnitude of the impulse imparted on the bullet [tex]P = F dt[/tex] -------- (1)
Put the value of F & dt in above equation we get,
P = 84000 × 0.0011
P = 92.4 [tex]\frac{lb ft}{sec}[/tex]
This is the value of impulse on the bullet in the given time interval.