In human resource management, performance of employees is measured as a numerical score which is assumed to be normally distributed. The mean score is 150 and the standard deviation 13. What is the probability that a randomly selected employee will have a score less than 120?

Respuesta :

Answer:

[tex]P(X<120)=P(\frac{X-\mu}{\sigma}<\frac{120-\mu}{\sigma})=P(Z<\frac{120-150}{13})=P(z<-2.308)[/tex]

And we can find this probability using the normal standard table or excel and we got:

[tex]P(z<-2.308)=0.0105[/tex]

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the scores of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(150,13)[/tex]  

Where [tex]\mu=150[/tex] and [tex]\sigma=13[/tex]

We are interested on this probability

[tex]P(X<120)[/tex]

And the best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

If we apply this formula to our probability we got this:

[tex]P(X<120)=P(\frac{X-\mu}{\sigma}<\frac{120-\mu}{\sigma})=P(Z<\frac{120-150}{13})=P(z<-2.308)[/tex]

And we can find this probability using the normal standard table or excel and we got:

[tex]P(z<-2.308)=0.0105[/tex]

ACCESS MORE