Answer:
[tex] E(Z) = E(X+Y) = E(X) +E(Y) = \mu_X +\mu_Y = 90+110=200[/tex]
[tex] Var(Z) = Var(X+Y) = Var(X) +Var(Y) +2 Cov(X,Y)[/tex]
Since X and Y are independent then [tex] Cov(X,Y) =0[/tex] and we have this:
[tex] Var(Z)= \sigma^2_X +\sigma^2_Y = 3^2 +4^2 = 9+16 =25[/tex]
And the deviation would be given by:
[tex] Sd(Z) = \sqrt{25}= 5[/tex]
And then the distribution for the total time would be given by:
[tex] Z= X+Y \sim N( \mu_Z= 200, \sigma_Z= 5)[/tex]
Step-by-step explanation:
For this case we can assume that X represent the flight time for the first filght and we know that:
[tex] X \sim N (\mu_X= 90. \sigma_x =3)[/tex]
And let Y the random variable that represent the time for the second filght and we know this:
[tex] Y \sim N(\mu_Y = 110, \sigma_Y =4)[/tex]
And we can define the random variable Z= X+Y as the total time for the two flights.
We can asume that X and Y are independent so then we have this:
[tex] E(Z) = E(X+Y) = E(X) +E(Y) = \mu_X +\mu_Y = 90+110=200[/tex]
[tex] Var(Z) = Var(X+Y) = Var(X) +Var(Y) +2 Cov(X,Y)[/tex]
Since X and Y are independent then [tex] Cov(X,Y) =0[/tex] and we have this:
[tex] Var(Z)= \sigma^2_X + \sigma^2_Y = 3^2 +4^2 = 9+16 =25[/tex]
And the deviation would be given by:
[tex] Sd(Z) = \sqrt{25}= 5[/tex]
And then the distribution for the total time would be given by:
[tex] Z= X+Y \sim N( \mu_Z= 200, \sigma_Z= 5)[/tex]