A bomb calorimeter has a heat capacity of 675 J/°C and contains 925 g of water. If the combustion of 0.500 mole of a hydrocarbon increases the temperature of the calorimeter from 24.26°C to 53.88°C, determine the enthalpy change per mole of hydrocarbon.

Respuesta :

Answer: The enthalpy of the reaction is 269.4 kJ/mol

Explanation:

To calculate the heat absorbed by the calorimeter, we use the equation:

[tex]q_1=c\Delta T[/tex]

where,

q = heat absorbed

c = heat capacity of calorimeter = 675 J/°C

[tex]\Delta T[/tex] = change in temperature = [tex]T_2-T_1=(53.88-24.26)^oC=29.62^oC[/tex]

Putting values in above equation, we get:

[tex]q_1=675J/^oC\times 29.62^oC=19993.5J[/tex]

To calculate the heat absorbed by water, we use the equation:

[tex]q_2=mc\Delta T[/tex]

where,

q = heat absorbed

m = mass of water = 925 g

c = heat capacity of water = 4.186 J/g°C

[tex]\Delta T[/tex] = change in temperature = [tex]T_2-T_1=(53.88-24.26)^oC=29.62^oC[/tex]

Putting values in above equation, we get:

[tex]q_2=925g\times 4.186J/g^oC\times 29.62^oC=114690.12J[/tex]

Total heat absorbed = [tex]q_1+q_2[/tex]

Total heat absorbed = [tex][19993.5+114690.12]J=134683.62J=134.7kJ[/tex]

To calculate the enthalpy change of the reaction, we use the equation:

[tex]\Delta H_{rxn}=\frac{q}{n}[/tex]

where,

q = amount of heat absorbed = 134.7 kJ

n = number of moles of hydrocarbon = 0.500 moles

[tex]\Delta H_{rxn}[/tex] = enthalpy change of the reaction

Putting values in above equation, we get:

[tex]\Delta H_{rxn}=\frac{134.7kJ}{0.500mol}=269.4kJ/mol[/tex]

Hence, the enthalpy of the reaction is 269.4 kJ/mol

Answer : The enthalpy change per mole of hydrocarbon is, 269 kJ/mole

Explanation :

Heat released by the reaction = Heat absorbed by the calorimeter + Heat absorbed by the water

[tex]q=[q_1+q_2][/tex]

[tex]q=[c_1\times \Delta T+m_2\times c_2\times \Delta T][/tex]

where,

q = heat released by the reaction

[tex]q_1[/tex] = heat absorbed by the calorimeter

[tex]q_2[/tex] = heat absorbed by the water

[tex]c_1[/tex] = specific heat of calorimeter = [tex]675J/^oC[/tex]

[tex]c_2[/tex] = specific heat of water = [tex]4.18J/g^oC[/tex]

[tex]m_2[/tex] = mass of water = 925 g

[tex]\Delta T[/tex] = change in temperature = [tex]T_2-T_1=(53.88-24.26)=29.62^oC[/tex]

Now put all the given values in the above formula, we get:

[tex]q=[(675J/^oC\times 29.62^oC)+(925g\times 4.18J/g^oC\times 29.62^oC)][/tex]

[tex]q=134519.23J=134.5kJ[/tex]

Now we have to calculate the enthalpy change per mole of hydrocarbon.

[tex]\Delta H=\frac{q}{n}[/tex]

where,

[tex]\Delta H[/tex] = enthalpy change = ?

q = heat released = 134.5 kJ

n = moles of hydrocarbon = 0.500 mol

[tex]\Delta H=\frac{134.5kJ}{0.500mole}=269kJ/mole[/tex]

Therefore, the enthalpy change per mole of hydrocarbon is, 269 kJ/mole

ACCESS MORE