Answer:
The transmitted intensity through all polarizers = 34.73
Explanation:
Given :
Incident intensity = [tex]52 W/m^2[/tex]
Angle between the transmission axis and polarizer optic axis = 18°
According to the malus law, when unpolarized or polarized light passes through polarizing disk, the intensity of the transmitted light is directly proportional to the square of the cosine of angle between the transmission axis and polarizer optic axis.
∴ [tex]I = I' cos^2\alpha[/tex]
Where [tex]I=[/tex] transmitted intensity, [tex]I'=[/tex] incident intensity, [tex]\alpha =[/tex] angle between the transmission axis and polarizer optic axis.
Here, there are four polarizing disks so that.
from first disk,
∴ [tex]I[/tex]₁ [tex]= 52 (cos)^2[/tex] 18°
= [tex]52[/tex]×[tex]0.904[/tex]
= [tex]47.01[/tex]
Now [tex]I[/tex]₁ behave as an incident light for second polarizer so we only multiply
[tex]cos^218[/tex] term
so we write,
∴ [tex]I[/tex]₂ = [tex]47.01[/tex]×[tex]0.904[/tex]
[tex]= 42.495[/tex]
From third polarizer,
∴ [tex]I[/tex]₃ = [tex]42.495[/tex]×[tex]0.904[/tex]
[tex]= 38.415[/tex]
From forth polarizer,
∴ [tex]I[/tex]₄ = [tex]38.415[/tex]×[tex]0.904[/tex]
[tex]= 34.73[/tex]
Therefor, the the transmitted intensity through forth polarizer = 34.73 [tex]W/m^2[/tex].