Answer:
velocity of the air at the inlet = 388.64 m/s
temperature = 368.92 K
cross-sectional area = 21.176 cm²
Explanation:
given data
pressure p1 = 200 kPa
temperature t1 = 325 K
mass flow rate n = 0.5 kg/s
inlet cross-sectional area = 6 cm²
pressure of the air = 100 kPa
velocity = 250 m/s.
cp = 1.008 kJ/kg.K
solution
as we know that
mass = [tex]\rho[/tex] A V ..............1
and
pV = nRT ..........2
so we can say
[tex]\frac{n}{V} = \frac{p}{RT}[/tex] ........3
so [tex]\rho = \frac{p}{RT}[/tex]
n = [tex]\frac{p}{RT} (AV)[/tex] ..........4
put her value we get
0.5 = [tex]\frac{200\times 10^3}{287\times 325} (6\times 10^{-4}\times V )[/tex]
solve we get
V = 388.64 m/s
and
we apply now here steady flow energy that is
[tex]n (h1 + \frac{v1^2}{2000} +\frac{gz1}{1000} ) +Q = n (h2 + \frac{v2^2}{2000} +\frac{gz2}{1000} ) + W[/tex] ..........5
here no heat and work
so Q = 0 and W = 0
we get here h1 - h2 that is
h1 - h2 = [tex]\frac{1}{2000} (v2^2-v1^2)[/tex] ..............6
Cp(T1-T2) = [tex]\frac{1}{2000} (v2^2-v1^2)[/tex]
put here value and we get
0.008 ( 325 - T2) = [tex]\frac{1}{2000} (250^2-388.64^2)[/tex]
T2 = 368.92 K
and
for Area2 we put value in equation 4
0.5 = [tex]\frac{100\times 10^3}{287\times 368.92} (A2\times 250 )[/tex]
solve it we get
A2 = 21.176 cm²