Respuesta :
Answer:
(c) 10.29 J
(d) 113.19 J
(e) 113.19 J
(f) 10061 N/m
Explanation:
15 cm = 0.15 m
Let g = 9.8 m/s2
(c) The work done by gravitational force is the product of gravity force and the distance compressed
[tex]E_p = mgx = 7*9.8*0.15 = 10.29 J[/tex]
(d) By using law of energy conservation with potential energy reference being 0 at the maximum compression point. As the ball falls and come to a stop at the compression point, its potential energy is transferred to elastic energy, which is the work that the mattress does on the ball:
[tex]E_p = E_e[/tex]
[tex]E_e = mgh[/tex]
where h = 1.5 + 0.15 = 1.65 m is the vertical distance that it falls.
[tex]E_e = 7*9.8*1.65 = 113.19 J[/tex]
(e) Before the compression, the potential energy of the mattress is 0. After the compression, the potential energy is 113.19J. So it has increased by 113.19J due to the potential energy transferred from the falling ball.
(f) [tex]E_e = 113.19 = kx^2/2[/tex]
[tex]k0.15^2/2 = 113.19[/tex]
[tex]k = 10061 N/m[/tex]
Answer:
(C) Wg = 113.2J
(D) Wm = 10.3J
(E) E = 1/2kx² + mgh where h is the height above the mattress and x is the compressed distance in the mattress.
(F) k = 457N/m.
Explanation:
See attachment below.
![Ver imagen akande212](https://us-static.z-dn.net/files/d33/7d93f825164c433f6c9f0aabc9723587.jpg)