Water flows in a tube that has a diameter of D= 0.1 m. Determine the Reynolds number if the average velocity is 10 diameters per second. (b) Repeat the calculations if the tube is a nanoscale tube with a dimeter of D= 100 nm.

Respuesta :

Answer:

a) [tex]Re_{D} = 111896.745[/tex], b) [tex]Re_{D} = 1.119\times 10^{-7}[/tex]

Explanation:

a) The Reynolds number for the water flowing in a circular tube is:

[tex]Re_{D} = \frac{\rho\cdot v\cdot D}{\mu}[/tex]

Let assume that density and dynamic viscosity at 25 °C are [tex]997\,\frac{kg}{m^{3}}[/tex] [tex]0.891\times 10^{-3}\,\frac{kg}{m\cdot s}[/tex], respectively. Then:

[tex]Re_{D}=\frac{(997\,\frac{kg}{m^{3}} )\cdot (1\,\frac{m}{s} )\cdot (0.1\,m)}{0.891\times 10^{-3}\,\frac{kg}{m\cdot s} }[/tex]

[tex]Re_{D} = 111896.745[/tex]

b) The result is:

[tex]Re_{D}=\frac{(997\,\frac{kg}{m^{3}} )\cdot (10^{-6}\,\frac{m}{s} )\cdot (10^{-7}\,m)}{0.891\times 10^{-3}\,\frac{kg}{m\cdot s} }[/tex]

[tex]Re_{D} = 1.119\times 10^{-7}[/tex]

ACCESS MORE