Answer:
95% Confidence interval: (39.43, 61.58)
Step-by-step explanation:
We are given the following in the question:
Sample mean, [tex]\bar{x}[/tex] = $50.50
Sample size, n = 15
Alpha, α = 0.05
Sample standard deviation = 20
95% Confidence interval:
[tex]\bar{x} \pm t_{critical}\displaystyle\frac{s}{\sqrt{n}}[/tex]
Putting the values, we get,
[tex]t_{critical}\text{ at degree of freedom 14 and}~\alpha_{0.05} = \pm 2.1447[/tex]
[tex]=50.50 \pm 2.1447(\dfrac{20}{\sqrt{15}} ) \\\\= 50.50 \pm 11.0751 \\= (39.4249,61.5751)\\\approx (39.43, 61.58)[/tex]
95% Confidence interval: (39.43, 61.58)