Answer:
145 cm²/s
Explanation:
Let the length be 'L', width be 'w' and area be 'A' at any time 't'.
Given:
Rate of increase of length is, [tex]\frac{dL}{dt}=8\ cm/s[/tex]
Rate of increase of width is, [tex]\frac{dw}{dt}=5\ cm/s[/tex]
Area of the rectangle is given as:
[tex]A=Lw[/tex]
Differentiating both sides with respect to time 't', we get;
[tex]\frac{dA}{dt}=\frac{d}{dt}(Lw)\\\\\frac{dA}{dt}=w\frac{dL}{dt}+L\frac{dw}{dt}[/tex]
Now, we need to find the rate of area increase when L = 13 cm and w = 10 cm. So, plug in all the given values and solve for [tex]\frac{dA}{dt}[/tex]. This gives,
[tex]\frac{dA}{dt}=(10)(8)+(13)(5)\\\\\frac{dA}{dt}=80+65=145\ cm^2/s[/tex]
Therefore, the area is increasing a a rate of 145 cm²/s.