Respuesta :
Step-by-step explanation:
[tex]radius = 9[/tex]
[tex]central \: angle = 120 \times \frac{3.14or\pi }{180} radian[/tex]
[tex]central \: angle = 2.09334 \: approximately = 2.1[/tex]
[tex]area \: of \: sector = \frac{1}{2} \times {r}^{2} \times central \: angle[/tex]
[tex]putting \: the \: values[/tex]
[tex]area \: of \: sector = \frac{1}{2} \times {9}^{2} \times 2.1[/tex][tex] = \frac{1}{2} \times 9 {}^{2} \times 2.1[/tex]
[tex]area \: of \: sector \: = 85.05 {m}^{2} [/tex]
Answer:
27π square units
Step-by-step explanation:
Note that a central angle of 120° is exactly 1/3 of a full circle.
So to find the area of this sector, find the area of the whole circle and divide your result by 3:
A = (1/3)π(9)^2 = 27π square units