Answer:
integral of [2sec²(t) tan²(t) + 16tan(t) + 63] dt
= (⅔)tan³(t) - ln|cos(t)| + 63t + C
Step-by-step explanation:
We are required to evaluate the integral of
[2sec²(t) tan²(t) + 16tan(t) + 63] dt
after making a substitution to express the integral as a rational function.
2sec²(t) tan²(t) + 16tan(t) + 63
This expressions in this function can be integrated independently.
First, let us find
Integral of 2sec²(t) tan²(t) dt
Let u = tan(t)
du = sec²(t) dt
dt = du/sec²(t)
Integral of 2sec²(t) tan²(t) dt =
Integral of 2sec²(t). u² . du/sec²(t)
= integral of 2u²du
= (⅔)u³
Integral of 2sec²(t) tan²(t) dt = (⅔)tan³(t) + C1 .....................................(1)
Integral of 16tan(t)
= integral of sin(t)/cos(t) dt
= -ln|cos(t)| + C2 ..................................(2)
Integral of 63 dt
= 63t + C3.............................................(3)
Adding (1), (2) and (3), we have
integral of [2sec²(t) tan²(t) + 16tan(t) + 63] dt
= (⅔)tan³(t) - ln|cos(t)| + 63t + C