Light with a wavelength of 395 nm illuminates a metal cathode. The maximum kinetic energy of the emitted electrons is 0.76 eV . Part A What is the longest wavelength of light that will cause electrons to be emitted from this cathode

Respuesta :

Answer:

520.8 nm

Explanation:

We are given that

[tex]\lambda=395 nm=395\times 10^{-9} m[/tex]

1 nm=[tex]10^{-9} m[/tex]

Maximum kinetic energy,[tex]K_{max}=0.76 eV=0.76\times 1.6\times 10^{-19}[/tex] V

[tex]1 e=1.6\times 10^{-19} C[/tex]

We have to find the maximum wavelength of light.

We know that

[tex]h\nu=\frac{hc}{\lambda_0}+K_{max}[/tex]

Where [tex]c=3\times 10^8 m/s[/tex]

[tex]h=6.625\times 10^{-34}[/tex]

[tex]6.625\times 10^{-34}\times \frac{3\times 10^8}{395\times 10^{-9}}=\frac{6.625\times 10^{-34}\times 3\times 10^8}{\lambda_0}+0.76\times 1.6\times10^{-19}[/tex]

[tex]6.625\times 10^{-34}\times \frac{3\times 10^8}{395\times 10^{-9}}- 0.76\times 1.6\times10^{-19}=\frac{6.625\times 10^{-34}\times 3\times 10^8}{\lambda_0}[/tex]

[tex]\lambda_0=\frac{6.625\times 10^{-34}\times 3\times 10^8}{6.625\times 10^{-34}\times \frac{3\times 10^8}{395\times 10^{-9}}- 0.76\times 1.6\times10^{-19}}[/tex]

[tex]\lambda_0=5.208\times 10^{-7} m[/tex]=520.8 nm

The longest wavelength of light that will cause electrons to be emitted from this cathode should be considered as the 520.8 nm.

Calculation of the longest wavelength:

Since

Wavelength = 395 nm = [tex]395\times 10^{-9} m[/tex]

Also,

1nm = [tex]10^{-9} m[/tex]

And, Maximum kinetic energy = 0.76 eV =[tex]0.76\times 1.6\times 10^{-19} V[/tex]

1e = [tex]1.6\times 10^{-19} C[/tex]

Now we know that

[tex]hv = \frac{hc}{ \lambda_0} + K_{max}[/tex]

Here

[tex]c = 3\times 10^8 m/s[/tex]

Now

[tex]h = 6.625\times 10^{-34}[/tex]

So,

[tex]6.25\times 10^{-34} \times \frac{3\times 10^8}{395\times 10^{-9)}} = \frac{6.625\times 10^-34*3\times 10^8}{ \lambda _0} + (0.76 \times 1.6 \times 10^{-19})\\\\6.625 \times 10^{-34} \times \frac{3\times 10^{8}}{395 \times 10^{-9}} - 0.76 \times 1.6 \times 10^{-19} = \frac{6.625\times 10^-34*3\times 10^8}{ \lambda _0}\\\\[/tex]

[tex]\lambda _0 = \frac{6.625\times 10^-34*3\times 10^8}{6.625 \times 10^{-34} \times \frac{3\times 10^8}{395 \times 10^{-9}} - 0.76 \times 1.6 \times 10^{-19} }\\\\= 5.208 \times 10^{-7} m \\\\[/tex]

= 520.8 nm

Learn more about wavelength here; https://brainly.com/question/24601907