Answer:
[tex]\Delta x_{1} \approx 0.259\,m[/tex]
Explanation:
The system formed by the spring and the package is described by the means of the Principle of Energy Conservation:
[tex](50\,kg)\cdot (9.807\,\frac{m}{s} )\cdot(8\,m+\Delta x)\cdot \sin 20^{\textdegree}+\frac{1}{2}\cdot (50\,kg)\cdot (2\,\frac{m}{s})^{2} +\frac{1}{2}\cdot (32000\,\frac{N}{m}) \cdot (0.05\,m)^{2} = \frac{1}{2}\cdot (32000\,\frac{N}{m}) \cdot (0.05\,m+\Delta x)^{2}[/tex]
After expanding and symplifying the expression, a second-order polynomial is found:
[tex]1481.677 + 167.710\cdot \Delta x = 16000\cdot [2.5\times 10^{-3}+0.1\cdot \Delta x + (\Delta x)^{2}][/tex]
[tex]1481.677 + 167.710\cdot \Delta x = 40+1600\cdot \Delta x + 16000\cdot(\Delta x)^{2}[/tex]
[tex]16000\cdot (\Delta x)^{2}+1432.29\cdot \Delta x - 1441.677 = 0[/tex]
The roots of the polynomial are:
[tex]\Delta x_{1} \approx 0.259\,m[/tex]
[tex]\Delta x_{2}\approx - 0.348\,m[/tex]
Physically speaking, the first root is the only real solution.