Answer:
a) [tex]F = 736.065\,lbf[/tex], b) [tex]\mu_{k} = 0.15[/tex]
Explanation:
a) The uniform dresser is modelled by using the following equations of equilibrium:
[tex]\Sigma F_{x} = F - \mu_{k}\cdot N = 0[/tex]
[tex]\Sigma F_{y} = N-m\cdot g=0[/tex]
After some algebraic manipulation, the following formula is derived:
[tex]F = \mu_{k}\cdot m \cdot g[/tex]
[tex]F = (0.25)\cdot (90\,lbm)\cdot (32.714\,\frac{ft}{s^{2}} )[/tex]
[tex]F = 22.5\,lbf[/tex]
b) The man is described by the following equations of equilibrium:
[tex]\Sigma F_{x} = -F + \mu_{k}\cdot N = 0[/tex]
[tex]\Sigma F_{y} = N-m\cdot g=0[/tex]
After some algebraic manipulation, the following formula for the static coefficient of friction is:
[tex]\mu_{k} = \frac{F}{m\cdot g}[/tex]
[tex]\mu_{k} = \frac{22.5\,lbf}{150\,lbf}[/tex]
[tex]\mu_{k} = 0.15[/tex]