Respuesta :

a ≈ 5.2, B ≈ 50°, C ≈ 95°

Solution:

Given data:

A = 35°, b = 7, c = 9

Using cosine law,

[tex]a^{2}=b^{2}+c^{2}-2 b c \cos A[/tex]

[tex]a^{2}=7^{2}+9^{2}-2 (7)(9) \cos 35^\circ[/tex]

[tex]a^{2}=49+81-126 (0.82)[/tex]

[tex]a^{2}=26.68[/tex]

Taking square root on both sides.

a ≈ 5.2

Using sine law,

[tex]$\frac{\sin A}{a} =\frac{\sin B}{b}[/tex]

[tex]$\frac{\sin 35^\circ}{5.2} =\frac{\sin B}{7}[/tex]

Multiply by 7 on both sides.

[tex]$\frac{0.5735}{5.2}\times 7 =\sin B[/tex]

Switch the sides.

Sin B = 0.772

[tex]B=\sin^{-1}0.772[/tex]

B ≈ 50°

Sum of all the angles of a triangle = 180°

A + B + C = 180°

35° + 50° + C = 180°

85° + C = 180°

C = 180° - 85°

C = 95°

Hence a ≈ 5.2, B ≈ 50°, C ≈ 95°.

ACCESS MORE