In a sample of 60 electric motors, the average efficiency (in percent) was 85 and the standard deviation was 2. Section 05.01 Exercise 12.a - Compute confidence interval; Find necessary sample size Find a 95% confidence interval for the mean efficiency. Round the answers to three decimal places.

Respuesta :

Answer:

95% confidence interval for the mean efficiency is [84.483 , 85.517].

Step-by-step explanation:

We are given that in a sample of 60 electric motors, the average efficiency (in percent) was 85 and the standard deviation was 2.

So, the pivotal quantity for 95% confidence interval for the population mean efficiency is given by;

          P.Q. = [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]

where, [tex]\mu[/tex] = sample average efficiency = 85

            [tex]\sigma[/tex] = sample standard deviation = 2

            n = sample of motors = 60

            [tex]\mu[/tex] = population mean efficiency

So, 95% confidence interval for the mean efficiency, [tex]\mu[/tex] is ;

P(-2.0009 < [tex]t_5_9[/tex] < 2.0009) = 0.95

P(-2.0009  < [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.0009 ) = 0.95

P( [tex]-2.0009 \times {\frac{s}{\sqrt{n} }[/tex] < [tex]{\bar X - \mu}[/tex] < [tex]2.0009 \times {\frac{s}{\sqrt{n} }[/tex] ) = 0.95

P( [tex]\bar X -2.0009 \times {\frac{s}{\sqrt{n} }[/tex] < [tex]\mu[/tex] < [tex]\bar X +2.0009 \times {\frac{s}{\sqrt{n} }[/tex] ) = 0.95

95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X -2.0009 \times {\frac{s}{\sqrt{n} }[/tex] , [tex]\bar X +2.0009 \times {\frac{s}{\sqrt{n} }[/tex] ]

                                                 = [ [tex]85 -2.0009 \times {\frac{2}{\sqrt{60} }[/tex] , [tex]85 +2.0009 \times {\frac{2}{\sqrt{60} }[/tex] ]

                                                 = [84.483 , 85.517]

Therefore, 95% confidence interval for the population mean efficiency is [84.483 , 85.517].