A 3.0-L gas mixture contains 30.% oxygen and 70.% nitrogen. Use the ideal gas law to determine the number of moles of oxygen at 2.0 atm and 400-K.

Respuesta :

Answer:

The number of moles of oxygen gas comes out to be 0.0548 mole

Explanation:

Given volume of gas = V = 3.0 L

The mixture contains 30 % oxygen gas by mole.

Pressure of mixture of gas =  P = 2.0 atm

Temperature = T = 400 K

Assuming n be the total number of moles of the mixture of gas.

The ideal gas equation is shown below

[tex]\textrm{PV} = \textrm{nRT} \\2.0 \textrm{ atm}\times 3.0\textrm{ L} = n \times 0.0821 \textrm{ L.atm.mol}^{-1}.K^{-1} \times 400 \textrm{ K} \\n = 0.18270 \textrm{ mole}[/tex]

The mixture contains 30% oxygen gas by mole

[tex]\textrm{ Number of moles of oxygen gas} = \displaystyle \frac{30\times 0.18270 \textrm{ mole}}{100} = 0.0548 \textrm{ mole}[/tex]

Number of moles of oxygen gas is 0.0548 mole

ACCESS MORE