Answer:
[tex]\frac{\sqrt{110} }{11}[/tex] or [tex]\frac{\sqrt{10} }{\sqrt{11} }[/tex]
Step-by-step explanation:
I assume you mean [tex]\frac{9\sqrt{10} }{9\sqrt{11} }[/tex]
there is a common factor of 9 in the numerator and denominator so we can cancel out to form [tex]\frac{\sqrt{10} }{\sqrt{11} }[/tex]
[tex]\frac{\sqrt{10} }{\sqrt{11} }[/tex] is technically a correct answer, but I will go ahead to rationalize the denominator
multiply [tex]\frac{\sqrt{10} }{\sqrt{11} }[/tex] by some form of 1. this case, we will use [tex]\frac{\sqrt{11} }{\sqrt{11} }[/tex] as our 1.
[tex]\frac{\sqrt{10} }{\sqrt{11} }[/tex]*[tex]\frac{\sqrt{11} }{\sqrt{11} }[/tex] = [tex]\frac{\sqrt{10} *\sqrt{11} }{\sqrt{11} *\sqrt{11} }[/tex] = [tex]\frac{\sqrt{110} }{11}[/tex]