Answer:
a) 4, 5, 7, 12
b) 7
c) 4.5, 6.5, 8, 6, 8.5, 9.5
d) 7.167
Step-by-step explanation:
We are given the following in the question:
4, 5, 7, 12
a) unique values for x
4, 5, 7, 12
b) mean of the population
[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]
[tex]\mu =\displaystyle\frac{28}{4} = 7[/tex]
c) sampling distribution for samples of size 2
Sample size, n = 2
Possible samples of size 2 are (4,5),(4,7),(4,12),(5,7),(5,12),(7,12)
Sample means are:
[tex]\bar{x_1} = \dfrac{4+5}{2} = 4.5\\\\\bar{x_2} = \dfrac{4+7}{2} = 6.5\\\\\bar{x_3} = \dfrac{4+12}{2} = 8\\\\\bar{x_4} = \dfrac{5+7}{2} = 6\\\\\bar{x_5} = \dfrac{5+12}{2} = 8.5\\\\\bar{x_6} = \dfrac{7+12}{2} = 9.5[/tex]
Thus, the list is 4.5, 6.5, 8, 6, 8.5, 9.5
d) mean of the sampling distribution
[tex]\bar{x} = \dfrac{4.5 + 6.5 + 8+ 6 + 8.5+ 9.5}{6} = \dfrac{43}{6} = 7.167[/tex]