Answer:
[tex]W= 3.22 \mu m[/tex]
Explanation:
the transistor In saturation drain current region is given by:
[tex]i_D}=K_a(V_{GS}-V_{IN})^2[/tex]
Making [tex]K_a[/tex] the subject of the formula; we have:
[tex]K_a=\frac {i_D} {(V_{GS} - V_{IN})^2}[/tex]
where;
[tex]i_D = 1.2m[/tex]
[tex]V_{GS}= 3.0V[/tex]
[tex]V_{TN} = 0.6 V[/tex]
[tex]K_a=\frac {1.2m} {(3.0 - 0.6)^2}[/tex]
[tex]K_a = 208.3 \mu A/V^2[/tex]
Also;
[tex]k'_n}=\frac{\mu n (\frac{cm^2}{V-s} ) \epsilon _{ox}(\frac{F}{cm} ) }{t_{ox}(cm)}[/tex]
where:
[tex]\mu n (\frac{cm^2}{V-s} ) = 600[/tex]
[tex]\epsilon _{ox}=3.9*8.85*10^{-14}[/tex]
[tex]{t_{ox}(cm)=200*10^{-8}[/tex]
substituting our values; we have:
[tex]k'_n}=\frac{(600)(3.988.85*10^{-14})}{(200*10^{-8})}[/tex]
[tex]k'_n}=103.545 \mu A/V^2[/tex]
Finally, the width can be calculated by using the formula:
[tex]W= \frac{2LK_n}{k'n}[/tex]
where;
L = [tex]0.8 \mu m[/tex]
[tex]W= \frac{2*0.8 \mu m *208.3 \mu}{103.545 \mu}[/tex]
[tex]W= 3.22 \mu m[/tex]