Answer:
The rate of heat transfer is - 935.392 kW
Explanation:
Given;
inlet pressure, P₁ = 20 bar
inlet temperature, T₁ = 440 k
outlet pressure, P₂ = 5 bar
outlet temperature, T₂ = 290 k
inlet velocity, v₁ = 18 m/s
outlet velocity, v₂ = 30 m/s
mass flow rate, Q = 6kg/s
developed power, W = 815 kW
From steam table;
at P₁ and T₁, interpolating between T = 400 and T = 450, h₁ = 3335.52 kJ/kg
at P₂ and T₂, interpolating between T= 250 and T= 300, h₂ = 3043.5 kJ/kg
Applying steady state energy balance equation;
[tex]\frac{Q}{m} -\frac{W}{m} = h_2-h_1 +\frac{1}{2} (v_2{^2} -v_1{^2})\\\\\frac{Q}{m} = h_2-h_1 +\frac{1}{2} (v_2{^2} -v_1{^2}) +\frac{W}{m}[/tex]
substitute values above into this equation and evaluate the rate of heat transfer
[tex]\frac{Q}{m} = h_2-h_1 +\frac{1}{2} (v_2{^2} -v_1{^2}) +\frac{W}{m}\\\\\frac{Q}{m} = 3043.5 - 3335.52 +\frac{1}{2000} (30{^2} -18{^2}) + \frac{815}{m} \\\\\frac{Q}{m} = -291.732 + \frac{815}{m}\\\\\frac{Q}{m} = \frac{815}{m} -291.732\\\\Q = 815 - m(291.732)\\Q = 815 - 6*291.732\\\\Q = 815-1750.392 = -935.392 \ kW[/tex]
Therefore, the rate of heat transfer, in kW, for a control volume enclosing the turbine is - 935.392 kW