Answer:
[tex]1486.5\frac{Btu}{s}[/tex]
Explanation:
The inlet specific volume of air is given by:
[tex]v_1=\frac{RT_1}{P_1}\\\\v_1=\frac{(0.3704\frac{psia.ft^3}{lbm.R})(1360R)}{150psia}\\\\v_1=3.358\frac{ft^3}{lbm} \ \ \ \ \ \ \ \ \...i[/tex]
The mass flow rates is expressed as:
[tex]\dot m=\frac{1}{v_1}A_1V_1\\\\\dot m=\frac{1}{3.358ft^3/psia}(0.1ft^2)(350ft/s)\\\\\dot m=10.42\frac{lbm}{s}[/tex]
The energy balance for the system can the be expresses in the rate form as:
[tex]E_{in}-E_{out}=\bigtriangleup \dot E=0\\\\E_{in}=E_{out}\\\\\dot m(h_1+0.5V_1^2)=\dot W_{out}+\dot m(h_2+0.5V_2^2)+Q_{out}\\\\\dot W_{out}=\dot m(h_2-h_1+0.5(V_2^2-V_1^2))=-m({cp(T_2-t_1)+0.5(V_2^2-V_1^2)})\\\\\\\dot W_{out}=-(10.42lbm/s)[(0.25\frac{Btu}{lbm.\textdegree F})(300-900)\textdegree F+0.5((700ft/s)^2-(350ft/s)^2)(\frac{1\frac{Btu}{lbm}}{25037ft^2/s^2})]\\\\\\\\=1486.5\frac{Btu}{s}[/tex]
Hence, the mass flow rate of the air is 1486.5Btu/s