Answer:
(a) 1.94
(b) 1.94
(c) 1.05
(d) 1.15
(e) 0.44
(f) 0.44
Step-by-step explanation:
A standard normal distribution has mean 0 and standard deviation 1.
(a)
The value of z for which P (Z < z) = 0.9738 is:
z = 1.94
(b)
Compute the value of z for which the area between 0 and z is 0.4738 as follows:
[tex]P(0<Z<z)=0.4738\\P(Z<z)-P(Z<0)=0.4738\\P(Z<z)-0.50=0.4738\\P(Z<z)=0.9738[/tex]
The value of z is,
z = 1.94
(c)
The value of z for which P (Z < z) = 0.8531 is:
z = 1.05
(d)
The value of z for which P (Z > z) = 0.1251 is:
[tex]P(Z>z)=0.1251\\1-P(Z<z)=0.1251\\P(Z<z)=0.8749[/tex]
z = 1.15
(e)
The value of z for which P (Z < z) = 0.67 is:
z = 0.44
(f)
The value of z for which P (Z > z) = 0.33 is:
[tex]P(Z>z)=0.33\\1-P(Z<z)=0.33\\P(Z<z)=0.67[/tex]
z = 0.44
**Use the z-table.