A 19th century lab technician is testing possible metals for bulb filaments. A tantalum filament with a surface area of 0.370 mm2 and an emissivity of 0.965 radiates 0.80 W of light. Determine the filament's temperature (in K). The melting point for tantalum is 3269 K.

Respuesta :

Explanation:

The given data is as follows.

       A = 0.370 [tex]mm^{2}[/tex] = [tex]3.7 \times 10^{-7} m^{2}[/tex]

    emissivity ([tex]\sigma[/tex]) = 0.965,     E = 0.80 W

As we know that,

            [tex]\frac{E}{A} = \sigma \times s \times T^{4}[/tex]

where,   s = Stefan-Boltzmann constant = [tex]5.6696 \times 10^{-8} w/m^{2} K[/tex]

Now, putting the given values into the above formula as follows.

        [tex]\frac{E}{A} = \sigma \times s \times T^{4}[/tex]  

        [tex]\frac{0.80}{0.370} = 0.965 \times 5.6696 \times 10^{-8} \times T^{4}[/tex]

            2.162 = [tex]5.471164 \times 10^{-8} \times T^{4}[/tex]

          39516271.13 = [tex]T^{4}[/tex]

             T = 79.28 K

Thus, we can conclude that the filament's temperature is 79.28 K.