Explanation:
The given data is as follows.
A = 0.370 [tex]mm^{2}[/tex] = [tex]3.7 \times 10^{-7} m^{2}[/tex]
emissivity ([tex]\sigma[/tex]) = 0.965, E = 0.80 W
As we know that,
[tex]\frac{E}{A} = \sigma \times s \times T^{4}[/tex]
where, s = Stefan-Boltzmann constant = [tex]5.6696 \times 10^{-8} w/m^{2} K[/tex]
Now, putting the given values into the above formula as follows.
[tex]\frac{E}{A} = \sigma \times s \times T^{4}[/tex]
[tex]\frac{0.80}{0.370} = 0.965 \times 5.6696 \times 10^{-8} \times T^{4}[/tex]
2.162 = [tex]5.471164 \times 10^{-8} \times T^{4}[/tex]
39516271.13 = [tex]T^{4}[/tex]
T = 79.28 K
Thus, we can conclude that the filament's temperature is 79.28 K.