Respuesta :
Answer:
If a Poisson process applies, we have the probability that k potholes are find in t miles as:
[tex]P(x=k)=\frac{(rt)^ke^{-rt}}{k!}[/tex]
The probability that no more that one pothole will appear in a section of one mile is P=0.1353.
The probability that no more that 4 potholes will occur in a given section of 5 miles is P=0.0293.
Step-by-step explanation:
We have the rate of potholes:
[tex]r=2\,pothole/mile[/tex]
If a Poisson process applies, we have the probability that k potholes are find in t miles as:
[tex]P(x=k)=\frac{(rt)^ke^{-rt}}{k!}[/tex]
The probability that no more that one pothole will appear in a section of one mile is P=0.1353:
[tex]t=1\\\\P(x<1)=P(0)=\frac{(2*1)^0e^{-2*1}}{0!}=\frac{1*e^{-2}}{1}= 0.1353[/tex]
The probability that no more that 4 potholes will occur in a given section of 5 miles is P=0.0293:
[tex]t=5\\\\P(x\leq4)=P(0)+P(1)+P(2)+P(4)\\\\P(0)=\frac{(2*5)^0e^{-2*5}}{0!}= 0.000045 \\\\P(1)= \frac{(2*5)^1e^{-2*5}}{1!}= 0.000454 \\\\ P(2)= \frac{(2*5)^2e^{-2*5}}{2!}= 0.002270 \\\\P(3)= \frac{(2*5)^3e^{-2*5}}{3!}= 0.007567 \\\\P(4)= \frac{(2*5)^4e^{-2*5}}{4!}= 0.018917 \\\\\\P(x\leq4)=P(0)+P(1)+P(2)+P(4)\\\\P(x\leq4)=0.000045+0.000454+0.00227+0.007567+0.018917\\\\P(x\leq 4)= 0.029253[/tex]
Following are the solution to the given points:
Assuming that X denotes the number of potholes
Given:
[tex]\to \text{per 1 mile} \ \lambda = 2 \\\\\to \text{per 5 mile} \ \lambda= (2)(5) = 10\\\\[/tex]
So, the pmf of X:
[tex]\to P(X=x) =\frac{e^{-2} (2)^2}{x!}\ \ \ \ \ x=0,1,2,... per 1 mile\\\[/tex]
For point a)
The probability having only one pothole occurring in a one-mile stretch is low:
[tex]\to P(X \leq 1)= P(X = 0)+P(X =1) \\\\[/tex]
[tex]=\frac{e^{-2} (2)^0}{0!}+ \frac{e^{-2} (2)^1}{1!} \\\\ =0.135335+0.270671\\\\ =0.406006 \\\\[/tex]
For point b)
The probability with no more than four potholes occurring in a five-mile stretch of road is: [tex]\to P (X \leq 4) = P(X =0)+P(X =1)+P(X =2)+P(X = 3)+P(X =4) \\\\[/tex]
[tex]= \frac{e^{-10} (10)^0}{0!}+ \frac{e^{-10} (10)^1}{1!}+ \frac{e^{-10} (10)^2}{2!}+ \frac{e^{-10} (10)^3}{3!}+ \frac{e^{-10} (10)^4}{4!} \\\\= 0.00045+0.000454+0.00227+0.007567+0.018917\\\\ =0.029253[/tex]
Therefore, the final answer is "0.406006 and 0.029253"
Learn more:
brainly.com/question/22236950