Calculate the number of Frenkel defects per cubic meter in zinc oxide at 935˚C. The energy for defect formation is 2.51 eV, while the density for ZnO is 5.55 g/cm3 at this temperature. The atomic weights of zinc and oxygen are 65.41 g/mol and 16.00 g/mol, respectively.

Respuesta :

Answer : The number of Frenkel defects per cubic meter in zinc oxide is, [tex]1.78\times 10^{23}[/tex]

Explanation :

First we have to calculate the number of lattice sites per cubic meter.

Formula used :

[tex]N=\frac{N_A\rho}{A_{Zn}+A_O}[/tex]

where,

[tex]N_A[/tex] = Avogadro's constant = [tex]6.022\times 10^{23}[/tex]

[tex]A_{Zn}[/tex] = atomic mass of zinc = 65.41 g/mol

[tex]A_{O}[/tex] = atomic mass of oxygen = 16 g/mol

[tex]\rho[/tex] = density of ZnO = [tex]5.55g/cm^3[/tex]

Now put all the given values in the above formula, we get:

[tex]N=\frac{(6.022\times 10^{23})\times (5.55)}{(65.41)+(16)}[/tex]

[tex]N=4.105\times 10^{28}\text{Lattice site}/m^3[/tex]

Now we have to calculate the Frenkel defects per cubic meter.

Formula used :

[tex]N_f=N\times \exp \left(\frac{-Q_f}{2kT} \right)[/tex]

where,

[tex]Q_f[/tex] = energy for defect formation = 2.51 eV

k = Boltzmann constant = [tex]8.62\times 10^{-5}[/tex]

T = temperature = [tex]935^oC=273+935=1208K[/tex]

Now put all the given values in the above formula, we get:

[tex]N_f=(4.105\times 10^{28})\times \exp \left(\frac{-2.51}{2\times (8.62\times 10^{-5})\times (1208)} \right)[/tex]

[tex]N_f=1.78\times 10^{23}[/tex]

Thus, the number of Frenkel defects per cubic meter in zinc oxide is, [tex]1.78\times 10^{23}[/tex]