Answer : The number of Frenkel defects per cubic meter in zinc oxide is, [tex]1.78\times 10^{23}[/tex]
Explanation :
First we have to calculate the number of lattice sites per cubic meter.
Formula used :
[tex]N=\frac{N_A\rho}{A_{Zn}+A_O}[/tex]
where,
[tex]N_A[/tex] = Avogadro's constant = [tex]6.022\times 10^{23}[/tex]
[tex]A_{Zn}[/tex] = atomic mass of zinc = 65.41 g/mol
[tex]A_{O}[/tex] = atomic mass of oxygen = 16 g/mol
[tex]\rho[/tex] = density of ZnO = [tex]5.55g/cm^3[/tex]
Now put all the given values in the above formula, we get:
[tex]N=\frac{(6.022\times 10^{23})\times (5.55)}{(65.41)+(16)}[/tex]
[tex]N=4.105\times 10^{28}\text{Lattice site}/m^3[/tex]
Now we have to calculate the Frenkel defects per cubic meter.
Formula used :
[tex]N_f=N\times \exp \left(\frac{-Q_f}{2kT} \right)[/tex]
where,
[tex]Q_f[/tex] = energy for defect formation = 2.51 eV
k = Boltzmann constant = [tex]8.62\times 10^{-5}[/tex]
T = temperature = [tex]935^oC=273+935=1208K[/tex]
Now put all the given values in the above formula, we get:
[tex]N_f=(4.105\times 10^{28})\times \exp \left(\frac{-2.51}{2\times (8.62\times 10^{-5})\times (1208)} \right)[/tex]
[tex]N_f=1.78\times 10^{23}[/tex]
Thus, the number of Frenkel defects per cubic meter in zinc oxide is, [tex]1.78\times 10^{23}[/tex]