Answer:
22.1 V
Explanation:
We are given that
[tex]A_1=0.7 cm^2=0.7\times 10^{-4} m^2[/tex]
[tex]A_2=2.5 cm^2=2.5\times 10^{-4} m^2[/tex]
[tex]A_3=2.2 cm^2=2.2\times 10^{-4} m^2[/tex]
[tex]A_4=3 cm^2=3\times 10^{-4} m^2[/tex]
Using [tex] 1cm^2=10^{-4} m^2[/tex]
We know that
[tex]R=\frac{\rho l}{A}[/tex]
In series
[tex]R=R_1+R_2+R_3+R_4[/tex]
[tex]R=\frac{\rho l}{A_1}+\frac{\rho l}{A_2}+\frac{\rho l}{A_3}+\frac{\rho l}{A_4}[/tex]
[tex]R=\frac{\rho l}{\frac{1}{A_1}+\frac{1}{A_2}+\frac{1}{A_3}+\frac{1}{A_4}}[/tex]
Substitute the values
[tex]R=\rho A(\frac{1}{0.7\times 10^{-4}}+\frac{1}{2.5\times 10^{-4}}+\frac{1}{2.2\times 10^{-4}}+\frac{1}{3\times 10^{-4}})[/tex]
[tex]R=\rho l(2.62\times 10^4)[/tex]
[tex]V=145 V[/tex]
[tex]I=\frac{V}{R}=\frac{145}{\rho l(2.62\times 10^4)}[/tex]
Voltage across the 2.5 square cm wire=[tex]IR=I\times \frac{\rho l}{A_2}[/tex]
Voltage across the 2.5 square cm wire=[tex]\frac{145}{\rho l(2.62\times 10^4)}\times \frac{\rho l}{2.5\times 10^{-4}}=22.1 V[/tex]
Voltage across the 2.5 square cm wire=22.1 V