Answer:
Explanation:
AVERAGE: the average value is given as
[tex]\frac{1}{0.1} \int\limits^\frac{1}{10} _0 {25+10sint} \, dt = \frac{1}{0.1} [ 25t- 10cos\ t]_0^{0.1}[/tex]
=[tex]\frac{1}{0.1} ([2.5-10]-10)=-175[/tex]
RMS= [tex]\sqrt{\int\limits^\frac{1}{3} _0 {y(t)^2} \, dt }[/tex]
[tex]y(t)^2 = (25 + 10sin \ t)^2 = 625 +500sin \ t + 10000sin^2 \ t[/tex]
[tex]\frac{1}{\frac{1}{3} } \int\limits^\frac{1}{3} _0 {y(t)^2} \, dt =3[ 625t -500cos \ t + 10000(\frac{t}{2} - \frac{sin2t}{4} )]_0^{\frac{1}{3} }[/tex]
=[tex]3[[\frac{625}{3} - 500 + 10000(\frac{1}{6} - 0.002908)] + 500] = 2845.92\\[/tex]
therefore, RMS = [tex]\sqrt{2845.92} = 53.3[/tex]