Answer:
The intesection points are:
[tex]\vec r_{2} = (0,19,-17)[/tex]
[tex]\vec r_{1} = (0, 53,-71)[/tex]
Step-by-step explanation:
The acceleration vector is:
[tex]\vec a = (2,-4,-8)[/tex]
The velocity vector is found by integrating the previous vector as a function of time:
[tex]\vec v = (-8+2\cdot t, 1 +4\cdot t, 5 - 8\cdot t)[/tex]
Afterwards, the position vector is constructed by means of integrating velocity vector:
[tex]\vec r = (15-8\cdot t+t^{2},-2+t+2\cdot t^{2}, 4+5\cdot t - 4\cdot t^{2})[/tex]
The particle trajectory intersects the yz-plane when x = 0, then:
[tex]t^{2}-8\cdot t +15 = 0[/tex]
The polynomial roots are:
[tex]t_{1}=5, t_{2}= 3[/tex]
The intesection points are:
[tex]\vec r_{2} = (0,19,-17)[/tex]
[tex]\vec r_{1} = (0, 53,-71)[/tex]