Respuesta :
Answer:
The 95% confidence interval for the true slope is (0.03985, 0.14206).
Step-by-step explanation:
For the regression equation:
[tex]\hat y=\alpha +\hat \beta x[/tex]
The (1 - α)% confidence interval for the regression coefficient or slope [tex](\hat \beta )[/tex] is:
[tex]Ci=\hat \beta \pm t_{\alpha/2, (n-2)}\times SE(\hat \beta )[/tex]
The regression equation for current GPA (Y) of students based on their GPA's when entering the program (X) is:
[tex]\hat Y=3.584756+0.090953 X[/tex]
The summary of the regression analysis is:
Predictor Coefficient SE t-stat p-value
Constant 3.584756 0.078183 45.85075 5.66 x 10⁻¹¹
Entering GPA 0.090953 0.022162 4.103932 0.003419
The regression coefficient and standard error are:
[tex]\hat \beta = 0.090953\\SE (\hat \beta)=0.022162[/tex]
The critical value of t for 95% confidence level and 8 degrees of freedom is:
[tex]t_{\alpha/2, n-2}=t_{0.05/2, 10-2}=t_{0.025, 8}=2.306[/tex]
Compute the 95% confidence interval for [tex](\hat \beta )[/tex] as follows:
[tex]CI=\hat \beta \pm t_{\alpha/2, (n-2)}\times SE(\hat \beta )\\=0.090953\pm 2.306\times 0.022162\\=0.090953\pm 0.051105572\\=(0.039847428, 0.142058572)\\\approx (0.03985, 0.14206)[/tex]
Thus, the 95% confidence interval for the true slope is (0.03985, 0.14206).
