Answer:
a) the answer is t=4 seconds
b) acceleration is zero
c) displacement= 142 m
Explanation:
Given the position of the particle
[tex]s=2t^3-24t+6[/tex]
a) the time required when velocity [tex]v=72 m/s[/tex]
[tex]v=72=\frac{ds}{st}=6t^2-24[/tex]
now we solve for time [tex]t[/tex]
[tex]6t^2=72+24=96\\\\\implies t^2=\frac{96}{6}\\\therefore t=4 s[/tex]
b) acceleration when [tex]v=30 m/s[/tex]
acceleration is the time derivative of velocity i.e
[tex]a=\frac{dv}{dt}=\frac{d}{dt}(30)=0[/tex]
c) the net displacement of the particle during the interval t = 1 s to t = 4 s is
[tex]s_4-s_1=2t^3-24+6|_{t=4}-2t^3-24+6|_{t=1}\\s_4-s_1=126-(-16)=142 m[/tex]