Water at 158C (r 5 999.1 kg/m3 and m 5 1.138 3 1023 kg/m·s) is flowing steadily in a 30-m-long and 5-cm-diameter horizontal pipe made of stainless steel at a rate of 9 L/s. Determine (a) the pressure drop, (b) the head loss, and (c) the pumping power requirement to overcome this pressure drop.

Respuesta :

Complete Question

The complete question is shown on the first uploaded image

Answer:

(a) the pressure drop is [tex]\Delta P_L = 100.185\ kPa[/tex]

(b) the head loss is the [tex]h_L =10.22\ m[/tex]

(c) the pumping power requirement to overcome this pressure drop [tex]W_p = 901.665\ W[/tex]

Explanation:

So the question we are told that the water is at a temperature of 15°C

 And also we are told that the density of the water is [tex]\rho=999.1\ kg/m^3[/tex]

 We are also told that the dynamic viscosity of the water is                                        [tex]\mu = 1.138 *10^{-3} kg/m \cdot s[/tex]

   From the diagram the length of the pipe is [tex]L=[/tex] 30 m    

  The diameter is given as [tex]D=[/tex] 5 cm [tex]\frac{5}{100} m = 0.05m[/tex]

   The volumetric flow rate is given as  [tex]Q=[/tex] 9 L/s [tex]= \frac{9}{1000} m^3/ s = 0.009\ m^3/s[/tex]

Now the objective of this solution is to obtain

      i the pressure drop,  ii the head loss iii  the pumping power requirement to overcome this pressure drop

to obtain this we need to get the cross-sectional area of the pipe which will help when looking at the flow analysis

       So mathematically the cross-sectional area is

                               [tex]A_s =\frac{\pi}{4} D^2[/tex]

                                    [tex]= \frac{\pi}{4} (5*10^{-2})[/tex]

                                   [tex]=1.963*10^{-3} m^2[/tex]

Next thing to do is to obtain average flow velocity which is mathematically represented as

                 [tex]v = \frac{Q}{A_s}[/tex]

                 [tex]v =\frac{9*10^{-3}}{1.963*10^{-3}}[/tex]

                  [tex]=4.585 \ m/s[/tex]

 Now to determine the type of flow we have i.e to know whether it a laminar flow , a turbulent flow or an intermediary flow

  We use the Reynolds number

if it is below [tex]4000[/tex] then it is a laminar flow but if it is higher then it is a turbulent flow ,now when it is exactly the value then it is an intermediary flow

     This Reynolds number is mathematically represented as

                           [tex]Re = \frac{\rho vD}{\mu}[/tex]

                                [tex]=\frac{(999.1)(4.585)(0.05)}{1.138*10^{-3}}[/tex]

                               [tex]=2.0127*10^5[/tex]

Now since this number is greater than 4000 the flow is turbulent

So we are going to be analyse the flow using the Colebrook's  equation which is mathematically represented as

                [tex]\frac{1}{\sqrt{f} } =-2.0\ log [\frac{\epsilon/D_h}{3.7} +\frac{2.51}{Re\sqrt{f} } ][/tex]

 Where f is the friction  factor , [tex]\epsilon[/tex] is the surface roughness ,

Now generally the surface roughness for stainless steel is

                                             [tex]\epsilon = 0.002 mm = 2*10^{-6} m[/tex]

Now substituting the values into the equation we have

                                   [tex]\frac{1}{\sqrt{f} } =-2.0\ log [\frac{2*10^{-6}/5*10^{-2}}{3.7} +\frac{2.51}{(2.0127*10^{5})\sqrt{f} } ][/tex]

So solving to obtain f we have

                                  [tex]\frac{1}{\sqrt{f} } =-2.0\ log [\frac{4*10^{-5}}{3.7} +\frac{2.51}{(2.0127*10^{5})\sqrt{f} } ][/tex]

                                 [tex]= -2.0log[1.0811 *10^{-5} +\frac{1.2421*10^{-5}}{\sqrt{f} } ][/tex]

                              [tex]f = 0.0159[/tex]

Generally the pressure drop is mathematically represented as

                                            [tex]\Delta P_L =f\ \frac{L}{D} \ \frac{\rho v^2}{2}[/tex]

Now substituting values into the equation

                                           [tex]= 0.0159 [\frac{30}{5*10^{-5}} ][\frac{(999.1)(4.585)}{2} ][/tex]

                                           [tex]=100.185 *10^3 Pa[/tex]

                                           [tex]=100.185 kPa[/tex]  

Generally the head loss in the pipe is mathematically represented as

                        [tex]h_L =\frac{\Delta P_L}{\rho g}[/tex]

                            [tex]= \frac{100.185 *10^3}{(999.1)(9.81)}[/tex]

                             [tex]=10.22m[/tex]

Generally the power input required to overcome this pressure drop is mathematically represented as

                     [tex]W_p = Q \Delta P_L[/tex]

                         [tex]=(9*10^{-3}(100.185*10^3))[/tex]

                         [tex]= 901.665\ W[/tex]

       

Ver imagen okpalawalter8
ACCESS MORE