Answer Step-by-step explanation:
Circumference of sphere=74 cm
Error=0.5 cm
a.We know that circumference of sphere=[tex]C=2\pi r[/tex]
Using the formula
[tex]74=2\pi r[/tex]
[tex]r=\frac{74}{2\pi}=\frac{37}{\pi}[/tex]
[tex]C=2\pi r[/tex]
Differentiate w.r.t r
[tex]\frac{dC}{dr}=2\pi[/tex]
[tex]dC=2\pi dr[/tex]
[tex]dr=\frac{dC}{2\pi}=\frac{0.5}{2\pi}[/tex]
Surface area of sphere=[tex]S=4\pi r^2[/tex]
Maximum area in the surface area=[tex]dS=8\pi rdr[/tex]
[tex]dS=8\pi\times \frac{37}{\pi}\times \frac{0.5}{2\pi}=23.5\approx 24 cm^2[/tex]
Hence,the maximum area in the surface area=24 square cm
Relative error=[tex]\frac{\Delta S}{S}\approx \frac{dS}{S}[/tex]
[tex]\frac{\Delta S}{S}=\frac{8\pi rdr}{4\pi r^2}=2\frac{dr}{r}=2\times \frac{\frac{0.5}{2\pi}}{\frac{37}{\pi}}=2\times \frac{0.5}{2\pi}\times \frac{\pi}{37}=0.014[/tex]
Hence, the relative error=0.014