Respuesta :
Answer:
Impedance = 19.44ohms
Current = 5.14A
Power factor = 0.62
Explanation:
Impedance in an RLC AC circuit is defined as the total opposition to the flow of current in the resistor, inductor and capacitor.
Impedance Z = √R²+(Xl-Xc)²
Where R is the resistance = 12Ω
Inductance L = 0.15H
Capacitance C = 100uF = 100×10^-6F
Since Xl = 2πfL and Xc = 1/2πfC where f is the frequency.
Xl = 2π×50×0.15
Xl = 15πΩ
Xl = 47.12Ω
Xc = 1/2π×50×100×10^-6
Xc = 100/π Ω
Xc = 31.83Ω
Z =√12²+(47.12-31.83)²
Z = √144+233.78
Z = 19.44Ω
Impedance = 19.44ohms
To calculate the circuit current, we will use the expression V=IZ where V is the supply voltage = 100V
I = V/Z = 100/19.44
I = 5.14Amperes
To calculate the power factor,
Power factor = cos(theta) where;
theta = arctan(Xl-Xc)/R
theta = arctan(47.12-31.83)/12
theta = arctan(15.29/12)
theta = arctan1.27
theta = 51.78°
Power factor = cos51.78°
Power factor = 0.62
Answer:
The circuit impedance [tex]=19.4 \Omega[/tex]
The circuit's current [tex]=5.14 A[/tex]
Circuit Power Factor [tex]=0.62[/tex]
Explanation:
Given:
Resistance [tex]R=12 \Omega[/tex]
Inductance [tex]=0.15H[/tex]
Capacitance [tex]=100uF[/tex]
Voltage [tex]=100V[/tex]
Step 1:
To calculate the inductive reactance, [tex]$X_{L}$[/tex].
[tex]X_{L}=2 \pi f L=2 \pi \times 50 \times 0.15=47.13 \Omega[/tex]
To calculate the Capacitive reactance,
[tex]X_{C}=\frac{1}{2 \pi f C}[/tex]
[tex]=\frac{1}{2 \pi \times 50 \times 100 \times 10^{-6}}[/tex]
[tex]=31.83 \Omega[/tex]
Step 2:
Circuit impedance,
[tex]$Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$[/tex]
where R is the resistance,
[tex]$&Z=\sqrt{12^{2}+(47.13-31.83)^{2}}[/tex]
[tex]&Z=\sqrt{144+234}=19.4 \Omega\end{aligned}$[/tex]
Step 3:
Circuits Current, I
[tex]$I=\frac{V_{S}}{Z}[/tex]
[tex]=\frac{100}{19.4}[/tex]
[tex]=5.14 \ A[/tex]
Step 4:
Voltages across the Circuit, [tex]$\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{C}}$[/tex]
[tex]V_{R}=I \times R=5.14 \times 12=61.7$ volts[/tex]
[tex]V_{L}=I \times X_{L}=5.14 \times 47.13=242.2$ volts[/tex]
[tex]V_{C}=\ I \times X_{C}=5.14 \times 31.8=163.5$ volts[/tex]
Step 5:
Circuits Power factor
[tex]$=\frac{R}{Z}=\frac{12}{19.4}=0.619$[/tex]
Therefore,
The circuit impedance [tex]=19.4 \Omega[/tex]
The circuit's current [tex]=5.14\ A[/tex]
Power Factor [tex]=0.62[/tex]
To learn more about Circuit, refer:
- https://brainly.com/question/15058220
- https://brainly.com/question/15170590