Answer:
The required sample size is 350 to estimate the proportion with a margin of error of 0.05
Step-by-step explanation:
We are given the following in the question:
[tex]\hat{p} = 0.65[/tex]
Confidence level = 95%
Margin of error = 0.05
Confidence interval:
[tex]\hat{p}\pm z_{stat}\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]
Margin of error =
[tex]z_{stat}\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]
[tex]z_{critical}\text{ at}~\alpha_{0.05} = 1.96[/tex]
Putting values, we get,
[tex]0.05 = 1.96\sqrt{\dfrac{(0.65)(1-0.65)}{n}}\\\\n = \dfrac{(1.96)^2(0.65)(1-0.65)}{(0.05)^2}\\\\n = 349.5856\\n \approx 350[/tex]
Thus, the required sample size is 350 to estimate the proportion with a margin of error of 0.05