Let x* denote Peter's score. Then
P(X > x*) = 0.025
P((X - 896)/174 > (x* - 896)/174) = 0.025
P(Z > z*) = 1 - P(Z < z*) = 0.025
P(Z < z*) = 0.975
where Z follows the standard normal distribution (mean 0 and std dev 1).
Using the inverse CDF, we find
P(Z < z*) = 0.975 ==> z* = 1.96
Then solve for x*:
(x* - 896)/174 = 1.96 ==> x* = 1237.04
so Peter's score is roughly 1237.