contestada

An incident beam of light moves through liquid water ( 1.33) and impinges upon an interface with glass ( 1.52) with an angle of incidence of 47.0o.What is the angle of the refracted beam (i.e., in the glass) with respect to the surface normal

Respuesta :

Answer:

The angle of the refracted beam with respect to the surface normal is [tex]\theta_{2} =39.79^{o}[/tex].

Explanation:

The direction of a beam of light changes when it crosses the interface between two media with different index of refraction. We will consider that n₁ and n₂ are the index of refraction of the first and the second medium and θ₁  and θ₂ are the angles that the beam of light makes with the surface normal in the first and the second medium respectively.

Snell's Law relates the angle of incidence θ₁ and the angle of refraction θ₂ of a beam of light with the index of refraction in each medium:

                                             [tex]n_{1} sin\theta_{1} =n_{2} sin\theta_{2}[/tex]

We are told that:

  • [tex]n_{1} =1.33[/tex]
  • [tex]n_{2} =1.52[/tex]
  • [tex]\theta_{1} =47^{o}[/tex]  

if we rearrange the equation:

                                              [tex]sin\theta_{2} =\frac{n_{1}}{n_{2}} sin\theta_{1}[/tex]

we get an expression for the angle of the refracted beam:

                                           [tex]\theta_{2}=arcsin(\frac{n_{1}}{n_{2}} sin\theta_{1})[/tex]

replacing the values we get that:

                                         [tex]\theta_{2}=arcsin(\frac{1.33}{1.52}\ sin47^{o})[/tex]

                                        [tex]\theta_{2} =arcsin(0.875\ .\ 0.731)[/tex]

                                             [tex]\theta_{2}=arcsin(0.640)[/tex]

finally we get that:

                                                 [tex]\theta_{2} =39.79^{o}[/tex]

                                     

                     

ACCESS MORE