Answer:
The unit cell edge length of the alloy is 0.3112 nm
Explanation:
Given;
density of chromium, Cr= 7.19 g/cm³
atomic weight of chromium, Cr = 52.00 g/mol
density of tantalum, Ta = 16.6 g/cm³
atomic weight of tantalum, Ta = 180.95 g/mol
Step 1: determine the average density of the atoms;
[tex]\rho _{Avg.} = \frac{100}{\frac{C_{Cr}}{\rho_{Cr}}+ \frac{C_{Ta}}{\rho_{Ta}}} \\\\\rho _{Avg.} = \frac{100}{\frac{22}{7.19}+ \frac{78}{16.6}} = 12.89\ g/cm^3[/tex]
Step 2: determine the average atomic weight;
[tex]A _{Avg.} = \frac{100}{\frac{C_{Cr}}{A_{Cr}}+ \frac{C_{Ta}}{A_{Ta}}} \\\\A _{Avg.} = \frac{100}{\frac{22}{52}+ \frac{78}{180.95}} = 117.08 \ g/mol[/tex]
Step 3: determine the cubic volume of the atoms;
there are 2 atoms per unit cell of a body centered cubic structure.
[tex]V_C = \frac{nA_{Avg.}}{\rho _{Avg.} N_A} = \frac{(2)*117.08}{12.89(6.023*10^{23})}\\\\V_C =3.016 *10^{-23} \ cm^3/unit \ cell[/tex]
Step 4: determine the unit cell edge length;
Vc = a³
[tex]a = (V_C)^{\frac{1}{3}}[/tex]
Where;
a is the edge length
[tex]a = (3.016*10^{-23})^{\frac{1}{3}} = (30.16*10^{-24})^{\frac{1}{3}} = 3.112*10^{-8} \ cm[/tex]
[tex]a = 3.112 *10^{-10} \ m =0.3112 *10^{-9} \ m = 0.3112\ nm[/tex]
Therefore, the unit cell edge length of the alloy is 0.3112 nm