A glucose solution is administered intravenously into the bloodstream at a constant rate r. As the glucose is added, it is converted into other substances and removed from the bloodstream at a rate that is proportional to the concentration at that time. Thus a model for the concentration C = C(t) of the glucose solution in the bloodstream is dC dt = r − k C where k is a positive constant. (a) Suppose that the concentration at time t = 0 is C0. Determine the concentration at any time t by solving the differential equation. C(t)

Respuesta :

Answer:

[tex]C(t)=\frac{r}{k}-(\frac{r-kC_o}{k})e^{-kt}[/tex]

Explanation:

The differential equation is given as:

[tex]\frac{dC}{dt} = r- kC[/tex]

[tex]\frac{dC}{r- kC} = dt[/tex]

Taking integral of both sides; we have:

[tex]\int\limits \frac{dC}{r- kC} = \int\limits dt[/tex]

[tex]-\frac{1}{k} In(r-kC) = t+D\\In(r-kC)=-kt-kD[/tex]

[tex]r-kC=e^{-kt-kD}[/tex]

[tex]r-kC=e^{-kt}e^{-kD}[/tex]

[tex]r-kC=Ae^{-kt}[/tex]

[tex]kC=r-Ae^{-kt}[/tex]

[tex]C=\frac{r}{k}-\frac{A}{k}e^{-kt}[/tex]

[tex]C(t)=\frac{r}{k}-\frac{A}{k}e^{-kt}[/tex]     ------- equation (1)

If C(0)= [tex]C_o[/tex] ; we have:

C(0)= [tex]\frac{r}{k}-\frac{A}{k}e^0[/tex]         (where; A is an integration constant)

[tex]C_o = \frac{r}{k}- \frac{A}{k}[/tex]

[tex]C_o=\frac{r-A}{k}[/tex]

[tex]kC_o=r-A[/tex]

[tex]A=r-kC_o[/tex]

Substituting [tex]A=r-kC_o[/tex] into equation (1); we have;

[tex]C(t)=\frac{r}{k}-(\frac{r-kC_o}{k})e^{-kt}[/tex]

ACCESS MORE