Answer:
C $ 57,282.803
Explanation:
We solve for a growing annuity at arithmetic increases of 5,000
[tex](a_1+\frac{d}{r} +d \times n) \times \frac{1-(1+r)^{-time} }{rate} - \frac{d \times n}{r}[/tex]
a1 = 30,000
d = 5,000
r = 0.10
time = n = 10
[tex](30,000+\frac{5,000}{0.1} +5,000 \times 10) \times \frac{1-(1+0.1)^{-10}}{0.10} - \frac{5,000 \times 10}{0.10}[/tex]
PV $298,793.72
Now, we calculate the installment of this which is the equivalent uniform annual cost
[tex]PV \div \frac{1-(1+r)^{-time} }{rate} = C\\[/tex]
PV 298,793.72
time 10
rate 0.14
[tex]298793.723741609 \div \frac{1-(1+0.14)^{-10} }{0.14} = C\\[/tex]
C $ 57,282.803