Respuesta :
Answer:
molar mass (of the diprotic acid) = 116g/mol
[tex]pK_{a_1}= 1.83[/tex]
[tex]pK_{a_2}=6.07[/tex]
Explanation:
The number of moles of [tex]NaOH[/tex] and [tex]H^+[/tex] are equal at the equivalence point since they are both taking part in the diprotic acid.
0.1 M means 0.1 moles in 1L or 0.1 moles in 1000 mL
Number of moles of 0.1 M NaOH at final equivalence point ;
= [tex]34.72 mL * \frac{0.1mole}{1000mL}[/tex]
= 0.00347 moles of NaOH
However, the number of moles of the diprotic acid in the 0.25 L solution is = [tex]\frac {0.00347}{2 }[/tex] (due to the fact that half of the concentration of NaOH is needed to give the same amount of [tex]H^+[/tex]
[tex]= 0.001736[/tex]
Given that:
The Total acid in the solution = 0.2015 g; to calculate the molar mass ; we have :
no of moles = [tex]\frac{mass}{molar mass}[/tex]
molar mass= [tex]\frac{mass}{numbers of moles}[/tex]
molar mass = [tex]\frac{0.2015}{0.001736}[/tex]
molar mass (of the diprotic acid) = 116g/mol
At the second equivalence point;
The pH = 9.27
pH = [tex]-log[H^+][/tex]
[tex][H^+]= 10^{-pH}[/tex]
[tex][H^+] = 10^{-9.27[/tex]
[tex][H+] = 5.37 * 10^{-10[/tex]
[tex][OH^-][/tex] can be calculated as follows:
[tex]\frac{10^{-14}}{[H^+]} = \frac {10^{-14}}{5.37* 10^{-10}}[/tex]
[tex][OH^-][/tex] = [tex]1.86*10^{-5}[/tex]
Let represent the equation from the reaction after the second equivalence point with:
[tex]X^{2-} + H_2O \rightleftharpoons HX^- + OH^-[/tex]
where:
[tex]X^{2-}[/tex] = [tex]\frac{0.001736}{(25 + 34.72)} * 1000[/tex]
[tex]X^{2-}[/tex] = [tex]0.029 M[/tex]
The ICE Table is shown as follows;
[tex]X^{2-}[/tex] [tex]+[/tex] [tex]H_2O[/tex] [tex]\rightleftharpoons[/tex] [tex]HX^-[/tex] [tex]+[/tex] [tex]OH^-[/tex]
Initial 0.029 0 0
Change -x +x +x
Equilibrium (0.029 - x) x x
[tex]Kb = \frac{[HX^-][OH^-]}{[X^{2-}]}[/tex]
[tex]Kb = \frac{x^2}{0.029-x}[/tex]
[tex]k_b}= \frac{(1.86*10^{-5})^2}{0.029-(1.86*10^{-5})}[/tex]
[tex]x = 1.191*10^{-8}[/tex]
[tex]K_a} = \frac {10^{-14}}{K_b}[/tex]
[tex]K_a} = \frac {10^{-14}}{1.191*10^{-8}}[/tex]
[tex]K_a} = 8.39 * 10^{-7}[/tex]
[tex]pK_a} = -log K_a[/tex]
[tex]pK_a} = -log (8.39*10^{-7})[/tex]
[tex]pK_{a_2}=6.07[/tex]
At the first equivalence point we have all H2X getting converted to [tex]HX^-[/tex] [tex]HX^-[/tex] is an amphoteric species which implies that it can serve as both an acid and a base
As such, in this process:
[tex]pH = pK_{a_1} + \frac{pKa_2}{2}[/tex]
Given that: the pH = 3.95
Then;
[tex]3.95 = pK_{a_1} + \frac{6.07}{2}[/tex]
[tex]3.95*2 = pK_{a_1} +{6.07}[/tex]
[tex]7.9 = pK_{a_1} +{6.07}[/tex]
[tex]pK_{a_1}= 7.9 - {6.07}[/tex]
[tex]pK_{a_1}= 1.83[/tex]