Respuesta :
Answer:
a) 0.4819
b) 0.3242
c) 0.1939
d) 56.06 gallons
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 34.5 gallons
Standard Deviation, σ = 11 gallons
We are given that the distribution of consumption of water is a bell shaped distribution that is a normal distribution.
Formula:
[tex]z_{score} = \displaystyle\frac{x-\mu}{\sigma}[/tex]
a) P(consumed more than 35 gallons of bottled water)
P(x > 35)
[tex]P( x > 35) = P( z > \displaystyle\frac{35 - 34.5}{11}) = P(z > 0.04545)[/tex]
[tex]= 1 - P(z \leq 0.04545)[/tex]
Calculation the value from standard normal z table, we have,
[tex]P(x > 35) = 1 - 0.5181 = 0.4819 = 48.19\%[/tex]
b) P(consumed between 25 and 35 gallons of bottled water)
[tex]P(25 \leq x \leq 35) \\\\= P(\displaystyle\frac{25 - 34.5}{11} \leq z \leq \displaystyle\frac{35-34.5}{11}) \\\\= P(-0.8636 \leq z \leq 0.0454)\\\\= P(z \leq 0.0454) - P(z < -0.8636)\\= 0.5181- 0.1939 =0.3242= 32.42\%[/tex]
[tex]P(25 \leq x \leq 35) = 32.42\%[/tex]
c) P(consumed less than 25 gallons of bottled water)
[tex]P( x < 25) = P( z < \displaystyle\frac{25 - 34.5}{11}) = P(z < -0.8636)[/tex]
Calculation the value from standard normal z table, we have,
[tex]P(x < 25) = 0.1939= 19.39\%[/tex]
d) We have to find the value of x such that the probability is 0.975
[tex]P( X < x) = P( z < \displaystyle\frac{x - 34.5}{1})=0.975[/tex]
Calculation the value from standard normal z table, we have,
[tex]\displaystyle\frac{x - 34.5}{11} = 1.960\\\\x = 56.06[/tex]
97.5% of people consumed less than 56.06 gallons of bottled water.
Answer:
(a) 0.48006
(b) 0.3251
(c) 0.19489
(d) 97.5% of people consumed less than 56 gallons of bottled water.
Step-by-step explanation:
We are given that the per capita consumption of bottled water is approximately normally distributed with a mean of 34.5 and a standard deviation of 11 gallons.
Let X = per capita consumption of bottled water
So, X ~ N([tex]\mu = 34.5,\sigma^{2} =11^{2}[/tex])
The z score probability distribution is given by;
Z = [tex]\frac{X-\mu}{\sigma}[/tex] ~ N(0,1)
(a) Probability that someone consumed more than 35 gallons of bottled water = P(X > 35)
P(X > 35) = P( [tex]\frac{X-\mu}{\sigma}[/tex] > [tex]\frac{35-34.5}{11}[/tex] ) = P(Z > 0.05) = 1 - P(Z [tex]\leq[/tex] 0.05)
= 1 - 0.51994 = 0.48006
(b) Probability that someone consumed between 25 and 35 gallons of bottled water = P(25 < X < 35)
P(25 < X < 35) = P(X < 35) - P(X [tex]\leq[/tex] 25)
P(X < 35) = P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{35-34.5}{11}[/tex] ) = P(Z < 0.05) = 0.51994
P(X [tex]\leq[/tex] 25) = P( [tex]\frac{X-\mu}{\sigma}[/tex] [tex]\leq[/tex] [tex]\frac{25-34.5}{11}[/tex] ) = P(Z [tex]\leq[/tex] -0.86) = 1 - P(Z < 0.86)
= 1 - 0.80511 = 0.19489
Therefore, P(25 < X < 35) = 0.51994 - 0.19489 = 0.3251
(c) Probability that someone consumed less than 25 gallons of bottled water = P(X < 25)
P(X < 25) = P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{25-34.5}{11}[/tex] ) = P(Z < -0.86) = 1 - P(Z [tex]\leq[/tex] 0.86)
= 1 - 0.80511 = 0.19489
(d) We have to find that 97.5% of people consumed less than how many gallons of bottled water, which means ;
P(X < x) = 0.975
P( [tex]\frac{X-\mu}{\sigma}[/tex] > [tex]\frac{x-34.5}{11}[/tex] ) = 0.975
P(Z > [tex]\frac{x-34.5}{11}[/tex] ) = 0.975
Now in the z table the critical value of X which have an area less than 0.975 is 1.96, i.e.;
[tex]\frac{x-34.5}{11}[/tex] = 1.96
[tex]x[/tex] - 34.5 = [tex]1.96 \times 11[/tex]
[tex]x[/tex] = 34.5 + 21.56 = 56.06 ≈ 56 gallons of bottled water
So, 97.5% of people consumed less than 56 gallons of bottled water.