Respuesta :
Answer:
96% CI for the production of seeds
[tex]1177.5\leq\mu\leq2520.5[/tex]
Step-by-step explanation:
We have a sample of size n=28. With these data we can calculate the mean and standard deviation of the sample.
Sample = [2450, 2504, 2114, 1110, 2137, 8015, 1623, 1531, 2008, 1716, 721, 863, 1136, 2819, 1911, 2101, 1051, 218, 1711, 1642, 228, 363, 5973, 1050, 1961, 1809, 130, 880 ]
Sample mean = 1849
Sample standard deviation = 1647
To calculate a 96% confidence interval, we use the t-statistic with df=27.
The t-value for this condition is t=2.1578.
[tex]M\pm t_{27}*s/\sqrt{n}\\\\1849\pm2.1578*1647/\sqrt{28}\\\\1849\pm671.5\\\\\\1849-671.5\leq\mu\leq 1849+671.5\\\\\\1177.5\leq\mu\leq2520.5[/tex]
Then, the 96% interval is
[tex]1177.5\leq\mu\leq2520.5[/tex]
The 96% interval is [117.5,2520.5] and this can be determined by using the t-statistics and the given data.
Given :
- Sample Size = 28
- Sample = [2450, 2504, 2114, 1110, 2137, 8015, 1623, 1531, 2008, 1716, 721, 863, 1136, 2819, 1911, 2101, 1051, 218, 1711, 1642, 228, 363, 5973, 1050, 1961, 1809, 130, 880]
The sample mean for this is 1849 and the standard deviation is 1647.
Use t-statistic with df = 27 to calculate 96% confidence interval. So, the t-value is 2.1578.
[tex]\rm M\pm t_{27}\times \dfrac{s}{\sqrt{n} }[/tex]
[tex]1849\pm 2.1578 \times \dfrac{1647}{\sqrt{28} }[/tex]
[tex]1849\pm 671.5[/tex]
[tex]1849-671.5\leq \mu \leq 1849+671.5[/tex]
[tex]117.5\leq \mu \leq 2520.5[/tex]
Therefore, the 96% interval is [117.5,2520.5].
For more information, refer to the link given below:
https://brainly.com/question/23044118